7,610 research outputs found

    Generalized Area Spectral Efficiency: An Effective Performance Metric for Green Wireless Communications

    Full text link
    Area spectral efficiency (ASE) was introduced as a metric to quantify the spectral utilization efficiency of cellular systems. Unlike other performance metrics, ASE takes into account the spatial property of cellular systems. In this paper, we generalize the concept of ASE to study arbitrary wireless transmissions. Specifically, we introduce the notion of affected area to characterize the spatial property of arbitrary wireless transmissions. Based on the definition of affected area, we define the performance metric, generalized area spectral efficiency (GASE), to quantify the spatial spectral utilization efficiency as well as the greenness of wireless transmissions. After illustrating its evaluation for point-to-point transmission, we analyze the GASE performance of several different transmission scenarios, including dual-hop relay transmission, three-node cooperative relay transmission and underlay cognitive radio transmission. We derive closed-form expressions for the GASE metric of each transmission scenario under Rayleigh fading environment whenever possible. Through mathematical analysis and numerical examples, we show that the GASE metric provides a new perspective on the design and optimization of wireless transmissions, especially on the transmitting power selection. We also show that introducing relay nodes can greatly improve the spatial utilization efficiency of wireless systems. We illustrate that the GASE metric can help optimize the deployment of underlay cognitive radio systems.Comment: 11 pages, 8 figures, accepted by TCo

    Ixazomib enhances parathyroid hormone-induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor.

    Get PDF
    The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin-mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element-luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases

    A convex dual programming for the rational minimax approximation and Lawson's iteration

    Full text link
    Computing the discrete rational minimax approximation in the complex plane is challenging. Apart from Ruttan's sufficient condition, there are few other sufficient conditions for global optimality. The state-of-the-art rational approximation algorithms, such as the adaptive Antoulas-Anderson (AAA), AAA-Lawson, and the rational Krylov fitting (RKFIT) method, perform highly efficiently, but the computed rational approximants may be near-best. In this paper, we propose a convex programming approach, the solution of which is guaranteed to be the rational minimax approximation under Ruttan's sufficient condition. Furthermore, we present a new version of Lawson's iteration for solving this convex programming problem. The computed solution can be easily verified as the rational minimax approximant. Our numerical experiments demonstrate that this updated version of Lawson's iteration generally converges monotonically with respect to the objective function of the convex programming. It is an effective competitive approach for the rational minimax problem, compared to the highly efficient AAA, AAA-Lawson, and the stabilized Sanathanan-Koerner iteration.Comment: 38 pages, 10 figure

    High-efficiency robust perovskite solar cells on ultrathin flexible substrates.

    Get PDF
    Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg(-1), given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells

    muon g2g-2 anomaly and μ\mu-τ\tau-philic Higgs doublet with a light CP-even component

    Full text link
    We examine the possibilities of accommodating the muon g2g-2 anomaly reported by Fermilab in the 2HDM with a discrete Z4Z_4 symmetry in which an inert Higgs doublet field (H, A, H±H,~A,~H^\pm) has the lepton flavor violation μ\mu-τ\tau interactions. We study the case of light HH (5 GeV <mH<<m_H< 115 GeV) and assume the Yukawa matrices to be real and symmetrical. Considering relevant theoretical and experimental constraints, especially for the multi-lepton searches at the LHC, we find the muon g2g-2 anomaly can be explained within 2σ2\sigma range in the region of 5 GeV <mH<20<m_H<20 GeV, 130 GeV <mA (mH±)<< m_A~(m_{H^\pm})< 610 GeV, and 0.005 <ρ<<\rho< 0.014. Meanwhile, the χτ2\chi^2_\tau fitting the data of lepton flavour universality in the τ\tau decays approaches to the SM prediction.Comment: 12 pages, 4 figures. arXiv admin note: text overlap with arXiv:2104.03227. text overlap with arXiv:1908.0375

    Assessment of Snow Status Changes Using L-HH Temporal-Coherence Components at Mt. Dagu, China

    Get PDF
    Multitemporal Phased Array type L-band Synthetic Aperture Radar (PALSAR) horizontally transmitted and horizontally received (HH) coherence data was decomposed into temporal-coherence, spatial-coherence, and thermal noise components. The multitemporal data spanned between February and May of 2008, and consisted of two pairs of interferometric SAR (InSAR) images formed by consecutive repeat passes. With the analysis of ancillary data, a snow increase process and a snow decrease process were determined. Then, the multiple temporal-coherence components were used to study the variation of thawing and freezing statuses of snow because the components can mostly reflect the temporal change of the snow that occurred between two data acquisitions. Compared with snow mapping results derived from optical images, the outcomes from the snow increase process and the snow decrease process reached an overall accuracy of 71.3% and 79.5%, respectively. Being capable of delineating not only the areas with or without snow cover but also status changes among no-snow, wet snow, and dry snow, we have developed a critical means to assess the water resource in alpine areas
    corecore